Power BI e linguagem R: mais poder para o BI e Data Science

PorLuiz Fernando Calaça em

Você está preparado para aprender sobre a integração entre o Power BI e o R? Se você disse “sim” com uma grande entusiasmo, então, vamos lá!

Neste artigo interessantíssimo, vou mostrar um pequeno exemplo de como você pode fazer o Power BI e a linguagem R trabalharem juntos para uma poderosa Ciência de Dados e Business Intelligence.

O poder de visualização de dados no Power BI e bibliotecas como o ggplot2 da linguagem R podem nos ajudar a fazer grandes coisas. Neste artigo, minha intenção é mostrar uma pequena e fácil integração.

É muito simples fazê-lo e precisaremos instalar três coisas para começar:

  1. Install R
  2. Install R Studio
  3. Install Power BI

A instalação é bem simples. Depois de terminada, prossigamos.

O exemplo que iremos trabalhar será utilizando a biblioteca sqldf da linguagem R e faremos tal ser executada dentro do Power BI. Clique no símbolo do R na visualization’s list (olhe a imagem abaixo). Talvez na primeira vez, o Power BI pode solicitar uma confirmação para ativação do R, simplesmente confirme, e então verá o R Script Editor e, se você clicar no terceiro item do menu, será aberto o R Studio.

Faça o download do Iris dataset para o nosso teste. Quando terminar, vá até o Power BI: Home > Get Data > Text/CSV, e importe o Iris dataset.

Para ativar o R Script Editor, você deve ‘Drag field into the Values area in the Visualization pane to start scripting’ (imagem abaixo). E em seguida, vamos escolher uma coluna qualquer e arrastá-la para o editor.

Quando você arrastar a ‘Column1’ para o R Script Editor, a console será ativada e, automaticamente, será criado um data.frame com uma coluna e com a função unique rows. Clique, posteriormente, no terceiro item do menu do R Script Editor para solicitar o R Studio. Neste momento, você deve ver esta tela com R Studio aberto:

Como você pode ver, o R Studio importou, automaticamente, o CSV oriundo do Power BI, com a linha:Como você pode ver, o R Studio importou, automaticamente, o CSV oriundo do Power BI, com a linha:

‘dataset’ = read.csv(‘caminho_do_csv’)

Agora, dentro do RStudio, vá até: tools > Install Packages; em seguida:

  1. Escreva no Packages: ‘sqldf’
  2. Ative o ‘install dependencies’
  3. Clique para instalar.

Quando terminado, copie este código abaixo (GitHub) para o R Studio:

library(sqldf)

#create dataframe #Selecting fields on Power Bi
dataset <- data.frame(Column1)

#remove duplicated rows
dataset <- unique(dataset)

sub_dataset <- sqldf(
  'SELECT count(Column1) FROM dataset')

plot(c(0, 1), c(0, 1), ann = F, bty = 'n', type = 'n', xaxt = 'n', yaxt = 'n')
text(x = 0.5, y = 0.5, paste("Total of Employees\n\n",
                             sub_dataset), 
     cex = 1.6, col = "black")

Após copiar o código, clique em Run para fazermos o teste de funcionamento. Na aba Plots você poderá ver o resultado:

Agora, volte ao Power BI e copie o código abaixo:

#create dataframe #Selecting fields on Power Bi
dataset <- data.frame(Colum1)

#remove duplicated rows
dataset <- unique(dataset)

library(sqldf)

sub_dataset <- sqldf(
  'SELECT count(Column1) FROM dataset')

plot(c(0, 1), c(0, 1), ann = F, bty = 'n', type = 'n', xaxt = 'n', yaxt = 'n')
text(x = 0.5, y = 0.5, paste("Total of Iris dataset\n\n",
                             nrow(sub_dataset)), 
     cex = 1.6, col = "black")

Note que, dentro do Power BI não colocamos o caminho do CSV, pois ele já está lá nativamente por termos importado anteriormente, assim podemos apenas arrastar as colunas – como ensinado – e elas serão adicionadas ao data.frame.

Finalmente, o resultado:

Essa foi uma simples e poderosa integração do Power BI e a linguagem R para mais poderosos BI’s. e também para o contexto da Ciência de Dados em que, a linguagem R é uma das campeãs!

Podemos fazer muitos mais com outras bibliotecas da linguagem R dentro do Power BI, tente integrar ainda mais.

E você? Ainda não começou a aprender sobre a era dos Dados? Comece o quanto antes!

Deixe um comentário! 0

0 comentário

Comentários

O seu endereço de e-mail não será publicado. Campos obrigatórios são marcados com *

Comentando como Anônimo

leia mais
Este projeto é mantido e patrocinado pelas empresas: